APEX MICROTECHNOLOGY CORPORATION
 RELIABILITY PREDICTION
 PA88

by

Granger Scofield

Date of prediction: 15-Mar-01

This reliability prediction is based on MIL-HDBK-217F, December 2, 1991 including Notice 2, February 28, 1995.

```
Conditions of this prediction are as follows:
    Hybrid quality level is Commercial
    Environment is Gf Ground, Fixed
    Case temperature is 40 C
    Internal Power Dissipation = 5 W
    Supply voltage is +/- }180\mathrm{ V
    An AC signal is applied.
    Product introduction date: 01-Aug-88
```

 The results of this prediction are:
 20.7 failures per million hours; or,
 \(M T B F=48.3\) thousand hours.
 | Transistors, Low Frequency, Bipolar: | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Lp}=\mathrm{Lb}$ * PiT * PiR * PiS | | | | | | | | | | |
| Q12,17 | | Volts $=$ | 40 | Watts = | 1.2 | $\mathrm{Tj}=$ | 175 | 'K/W= | 125 | |
| Usage: | Vstress $=1.3$ | Vpwr = | 1.3 | $\mathrm{lc}=$ | 1E-05 | $\mathrm{Vs}=$ | 0.0325 | Power = | $1 \mathrm{E}-05$ | |
| Lb | PiT | PiR | PiS | | | | Nc | $\mathrm{Tj}=$ | 40.002 | |
| 0.00074 | 1.404949 | 1.0698 | 0.0498 | | | | 2 | | | 0.000111 |
| Q1 | | Volts $=$ | 120 | Watts = | 1.2 | $\mathrm{Tj}=$ | 200 | 'K/W= | 145.83 | |
| Usage: | Vstress $=0.65$ | Vpwr = | 0.65 | $\mathrm{lc}=$ | 8E-05 | Vs $=$ | 0.0054 | Power = | 5E-05 | |
| Lb | PiT | PiR | PiS | | | | Nc | $\mathrm{Tj}=$ | 40.007 | |
| 0.00074 | 1.405116 | 1.0698 | 0.0458 | | | | 1 | | | 5.09E-05 |
| Q2 | | Volts $=$ | 140 | Watts = | 1.2 | $\mathrm{Tj}=$ | 200 | 'K/W= | 145.83 | |
| Usage: | Vstress $=4.3$ | Vpwr $=$ | 4.3 | $\mathrm{lc}=$ | 8E-05 | Vs $=$ | 0.0307 | Power = | 0.0003 | |
| Lb | PiT | PiR | PiS | | | | Nc | $\mathrm{Tj}=$ | 40.047 | |
| 0.00074 | 1.406326 | 1.0698 | 0.0495 | | | | 1 | | | 5.51E-05 |
| Transistors, Low Frequency, Si JFET: | | | $\mathrm{Lb}=$ | 0.0045 | | | | | | |
| Lp = Lb * PiT | | | | | | | | | | |
| Q10A,B | | Volts $=$ | 50 | Watts = | 4 | $\mathrm{Tj}=$ | 150 | 'K/W= | 31.25 | |
| Usage: | | Vpwr $=$ | 3 | $\mathrm{ld}=$ | 8E-05 | | | Power = | 0.0002 | |
| Lb | PiT | | | | | | Nc | $\mathrm{Tj}=$ | 40.007 | |
| 0.0045 | 1.36303 | | | | | | 2 | | | 0.012267 |
| Q19 | | Volts = | 30 | Watts = | 0.8 | $\mathrm{Tj}=$ | 150 | 'K/W= | 156.25 | |
| Usage: | | Vpwr $=$ | 1.5 | $\mathrm{ld}=$ | 1E-06 | | | Power = | $2 \mathrm{E}-06$ | |
| Lb | PiT | | | | | | Nc | $\mathrm{Tj}=$ | 40 | |
| 0.0045 | 1.362848 | | | | | | 2 | | | 0.012266 |
| Transistors, Low Frequency, Si MOSFET: Lb = | | | | 0.012 | | | | | | |
| Lp = Lb * PiT | | | | | | | | | | |
| Q9,18 | | Volts = | 450 | Watts = | 25 | $\mathrm{Tj}=$ | 150 | 'K/W= | 5 | |
| Usage: | | Fraction Output Pwr $=1 /$ | | | 1 | | | Power $=$ | 5 | |
| Lb | PiT | | | | | | Nc | $\mathrm{Tj}=$ | 65 | |
| 0.012 | 2.147846 | | | | | | 2 | | | 0.051548 |
| Q3 | | Volts $=$ | 450 | Watts = | 4 | $\mathrm{Tj}=$ | 150 | 'K/W= | 31.25 | |
| Usage: | | Vpwr $=$ | 175.7 | $\mathrm{ld}=$ | 3E-05 | | | Power = | 0.0053 | |
| Lb | PiT | | | | | | Nc | $\mathrm{Tj}=$ | 40.165 | |
| 0.012 | 1.367257 | | | | | | 1 | | | 0.016407 |

Q4		Volts $=$	450	Watts =	4	$\mathrm{Tj}=$	150	'K/W=	31.25	
Usage:		Vpwr =	350.9	$\mathrm{ld}=$	8E-05			Power =	0.0263	
Lb	PiT						Nc	Tj =	40.822	
0.012	1.384985						1			0.01662
Q5,14		Volts =	450	Watts =	4	$\mathrm{Tj}=$	150	'K/W=	31.25	
Usage:		Vpwr =	3	$\mathrm{ld}=$	8E-05			Power =	0.0002	
Lb	PiT						Nc	$\mathrm{Tj}=$	40.007	
0.012	1.36303						2			0.032713
Q6		Volts $=$	450	Watts =	4	$\mathrm{Tj}=$	150	'K/W=	31.25	
Usage:		Vpwr =	171	$\mathrm{ld}=$	8E-05			Power =	0.0128	
Lb	PiT						Nc	$\mathrm{Tj}=$	40.401	
0.012	1.373602						1			0.016483
Q7		Volts =	450	Watts =	4	$\mathrm{Tj}=$	150	'K/W=	31.25	
Usage:		Vpwr =	170.8	$\mathrm{ld}=$	8E-05			Power =	0.0128	
Lb	PiT						Nc	$\mathrm{Tj}=$	40.4	
0.012	1.37359						1			0.016483
Q11		Volts $=$	450	Watts =	4	$\mathrm{Tj}=$	150	'K/W=	31.25	
Usage:		Vpwr $=$	6	$\mathrm{ld}=$	0.0004			Power =	0.0024	
Lb	PiT						Nc	$\mathrm{Tj}=$	40.075	
0.012	1.364851						1			0.016378
Q13		Volts =	450	Watts =	4	$\mathrm{Tj}=$	150	'K/W=	31.25	
Usage:		Vpwr =	176	$\mathrm{ld}=$	0.0002			Power =	0.0317	
Lb	PiT						Nc	$\mathrm{Tj}=$	40.99	
0.012	1.389527						1			0.016674
Q15,16		Volts $=$	450	Watts =	4	$\mathrm{Tj}=$	150	'K/W=	31.25	
Usage:		Vpwr =	171	$\mathrm{ld}=$	0.0005			Power =	0.077	
Lb	PiT						Nc	$\mathrm{Tj}=$	42.405	
0.012	1.428266						2			0.034278

Capacitors, ceramic general purpose type CK:

Lp $=$ Lb * PiT * PiC * PiV		Lb =	
C3		Volts =	
Usage:	Vstress $=$	6	
Lb	PiT	PiC	Pi V
0.00099	1.92167	0.243	1.0001

0.00099
$\mathrm{pF}=\quad 150$
$S=\quad 0.03$
Nc
1
0.000463

C1			Volts $=$	100	$\mathrm{pF}=$	470					
Usage:	Vstress $=$	6					$S=$	0.06			
Lb	PiT	PiC	Pi V					Nc			
0.00099	1.92167	0.269	1.001					1			0.000513
C2			Volts =	100	$\mathrm{pF}=$	470					
Usage:	Vstress =	1.5					$\mathrm{S}=$	0.015			
Lb	PiT	PiC	Pi V					Nc			
0.00099	1.92167	0.269	1					1			0.000513
Diodes, Low Frequency:											
$\mathrm{Lp}=\mathrm{Lb}$ * PiT * PiS * PiC											
Diodes, Switching, Lb =			0.001								
D4,5			Volts =	100	Watts $=$	0.38	$\mathrm{Tj}=$	175	'K/W=	394.74	
Usage:			Volts =	2.5	$\mathrm{lc}=$	1E-05	Vs =	0.025	Power =	7E-06	
Lb	PiT	PiS	PiC					Nc	$\mathrm{Tj}=$	40.003	
0.001	1.644053	0.054	2					2			0.000355
Diodes, Zener, Lb =			0.002								
D1,2			Volts =	3.1	Watts $=$	2.5	$\mathrm{Tj}=$	175	'K/W=	60	
Usage:					Ic =	8E-05			Power =	0.0002	
Lb	PiT	PiS	PiC					Nc	Tj =	40.014	
0.002	1.363215	1	2					2			0.010906

Hybrid microcircuit:
Lp=sumLc*(1+.2*PiE) * PiF * PiQ * PiL

0.255084	1.4	5.8	10	1

Total failures per million hours $=\quad 20.713$
Mean time between failures $=\quad 48279$

